home *** CD-ROM | disk | FTP | other *** search
Text File | 2001-08-08 | 35.6 KB | 1,775 lines |
- // Obstacle Definition File
- // (c) Charybdis 1999
- obstacles
- {
- polygon
- {
- height 1.935 to 4.935
- centre (11.4313, 187.786)
- vertices
- {
- vertex 0 (-10.9333,-87.2175)
- vertex 1 (-4.6125,-86.3539)
- vertex 2 (-0.170833,-56.7765)
- vertex 3 (12.416,-31.8795)
- vertex 4 (33.3009,-11.1394)
- vertex 5 (58.6696,2.00524)
- vertex 6 (88.498,6.61774)
- vertex 7 (88.498,11.9136)
- vertex 8 (-10.9333,11.9583)
- }
- sub_polygons
- {
- convex_polygon 0 { 8 0 1 2 }
- convex_polygon 1 { 8 2 3 }
- convex_polygon 2 { 8 3 4 }
- convex_polygon 3 { 5 6 7 8 }
- convex_polygon 4 { 4 5 8 }
- }
- attributes high
- }
- polygon
- {
- height 1.435 to 4.435
- centre (13.089, 14.8973)
- vertices
- {
- vertex 0 (-12.8083,-14.5)
- vertex 1 (84.037,-14.7417)
- vertex 2 (84.0738,-5.8)
- vertex 3 (58.6414,-1.71173)
- vertex 4 (31.2666,11.759)
- vertex 5 (11.7161,30.7013)
- vertex 6 (-2.51956,58.5042)
- vertex 7 (-7.35289,87.2327)
- vertex 8 (-12.9112,86.991)
- }
- sub_polygons
- {
- convex_polygon 0 { 0 1 2 3 }
- convex_polygon 1 { 0 3 4 }
- convex_polygon 2 { 0 4 5 }
- convex_polygon 3 { 6 7 8 0 }
- convex_polygon 4 { 0 5 6 }
- }
- attributes high
- }
- polygon
- {
- height 2.935 to 5.935
- centre (184.587, 16.9874)
- vertices
- {
- vertex 0 (-88.6976,-16.6902)
- vertex 1 (15.1956,-16.9844)
- vertex 2 (15.1579,84.2782)
- vertex 3 (7.08108,83.4709)
- vertex 4 (2.97274,56.0253)
- vertex 5 (-10.6038,29.0664)
- vertex 6 (-31.0585,8.82367)
- vertex 7 (-55.9012,-3.75441)
- vertex 8 (-88.9713,-8.03605)
- }
- sub_polygons
- {
- convex_polygon 0 { 1 2 3 4 }
- convex_polygon 1 { 1 4 5 }
- convex_polygon 2 { 1 5 6 }
- convex_polygon 3 { 7 8 0 1 }
- convex_polygon 4 { 1 6 7 }
- }
- attributes high
- }
- polygon
- {
- height -4.065 to -1.065
- centre (191.062, 189.567)
- vertices
- {
- vertex 0 (-93.2766,10.0912)
- vertex 1 (-92.2318,4.53287)
- vertex 2 (-63.0607,0.907869)
- vertex 3 (-36.2357,-13.1088)
- vertex 4 (-16.7464,-33.3036)
- vertex 5 (-3.30272,-60.2826)
- vertex 6 (1.04728,-90.491)
- vertex 7 (8.53895,-89.2826)
- vertex 8 (8.93284,10.3917)
- }
- sub_polygons
- {
- convex_polygon 0 { 8 0 1 2 }
- convex_polygon 1 { 8 2 3 }
- convex_polygon 2 { 8 3 4 }
- convex_polygon 3 { 5 6 7 8 }
- convex_polygon 4 { 4 5 8 }
- }
- attributes high
- }
- polygon
- {
- height 3.87313 to 6.87313
- centre (87.12, 27.7339)
- vertices
- {
- vertex 0 (-4.25,-1.25)
- vertex 1 (0.75,-2.5625)
- vertex 2 (3.875,-1.125)
- vertex 3 (4.6875,-5.3125)
- vertex 4 (8.125,-6.4375)
- vertex 5 (7.625,-3.875)
- vertex 6 (7.41101,0.54236)
- vertex 7 (1.4375,3)
- vertex 8 (-2.33899,2.29236)
- vertex 9 (-2.83899,5.79236)
- vertex 10 (-6.625,6.75)
- vertex 11 (-6.5625,1.4375)
- }
- sub_polygons
- {
- convex_polygon 0 { 2 3 4 5 }
- convex_polygon 1 { 2 5 6 7 }
- convex_polygon 2 { 8 9 10 11 0 }
- convex_polygon 3 { 7 8 0 1 2 }
- }
- attributes medium
- }
- polygon
- {
- height 1.2176 to 4.2176
- centre (120.818, 24.9492)
- vertices
- {
- vertex 0 (-0.375,10.25)
- vertex 1 (-4.63651,9.875)
- vertex 2 (-5.51151,15.5541)
- vertex 3 (-2.01151,15.7416)
- vertex 4 (-1.69901,19.0541)
- vertex 5 (-7.38651,20.5541)
- vertex 6 (-8.38651,18.4916)
- vertex 7 (-8.13651,6.80414)
- vertex 8 (-5.76151,5.49164)
- vertex 9 (-0.574005,5.74164)
- vertex 10 (4.89843e-016,-4)
- vertex 11 (3.4375,-3.3125)
- vertex 12 (4.0625,6.25)
- }
- sub_polygons
- {
- convex_polygon 0 { 9 10 11 12 0 }
- convex_polygon 1 { 7 8 9 0 1 }
- convex_polygon 2 { 5 6 7 1 2 }
- convex_polygon 3 { 4 5 2 3 }
- }
- attributes medium
- }
- polygon
- {
- height -0.235186 to 2.76482
- centre (88.3438, 43.5284)
- vertices
- {
- vertex 0 (-4,-7.34764e-016)
- vertex 1 (-2.5625,-4.5)
- vertex 2 (3.5625,-3.875)
- vertex 3 (7.4375,-4.5625)
- vertex 4 (10.8125,-2.8125)
- vertex 5 (11.5625,1.875)
- vertex 6 (15.1875,1.125)
- vertex 7 (16.3125,2.75)
- vertex 8 (13.9375,5.625)
- vertex 9 (8.8125,5.4375)
- vertex 10 (8.375,-0.25)
- vertex 11 (3.4375,-0.25)
- vertex 12 (0.75,-1.1875)
- vertex 13 (1.125,4.3125)
- vertex 14 (-1.1875,5.4375)
- vertex 15 (-2.875,4.1875)
- }
- sub_polygons
- {
- convex_polygon 0 { 8 9 10 }
- convex_polygon 1 { 0 1 2 }
- convex_polygon 2 { 5 6 7 8 }
- convex_polygon 3 { 5 8 10 }
- convex_polygon 4 { 2 3 4 5 10 }
- convex_polygon 5 { 2 10 11 12 }
- convex_polygon 6 { 0 2 12 }
- convex_polygon 7 { 15 0 12 13 14 }
- }
- attributes medium
- }
- polygon
- {
- height 0.835741 to 3.83574
- centre (112.629, 56.2118)
- vertices
- {
- vertex 0 (-4.125,-1.0625)
- vertex 1 (1.5625,-2.6875)
- vertex 2 (2.0625,0.875)
- vertex 3 (0.0625,1.375)
- vertex 4 (-2.1875,5.25)
- vertex 5 (-7.17084,9.63828)
- vertex 6 (-9.35834,11.5133)
- vertex 7 (-12.9833,13.2008)
- vertex 8 (-13.4833,16.3258)
- vertex 9 (-16.4833,17.3883)
- vertex 10 (-17.1708,10.1383)
- vertex 11 (-12.4833,9.26328)
- vertex 12 (-11.9208,5.26328)
- vertex 13 (-8.85834,3.38828)
- vertex 14 (-6.04584,3.26328)
- vertex 15 (-5.85834,1.45078)
- }
- sub_polygons
- {
- convex_polygon 0 { 7 8 9 10 11 }
- convex_polygon 1 { 4 5 6 7 11 12 13 14 }
- convex_polygon 2 { 15 0 1 2 3 }
- convex_polygon 3 { 15 3 4 14 }
- }
- attributes medium
- }
- polygon
- {
- height 2.46182 to 5.46182
- centre (143.7, 55.2652)
- vertices
- {
- vertex 0 (-3.25,-3.70448)
- vertex 1 (4.89843e-016,-4)
- vertex 2 (1.0625,1.29552)
- vertex 3 (4.9375,1.67052)
- vertex 4 (6.125,7.85802)
- vertex 5 (5.3125,10.233)
- vertex 6 (9.5625,9.85802)
- vertex 7 (10.75,11.3736)
- vertex 8 (10.3125,14.5611)
- vertex 9 (13.0625,13.5611)
- vertex 10 (15.125,15.9361)
- vertex 11 (15.3125,20.3736)
- vertex 12 (18.75,20.8736)
- vertex 13 (19.9968,22.1086)
- vertex 14 (20.6218,25.9836)
- vertex 15 (23.4343,30.9836)
- vertex 16 (23.7018,34.1912)
- vertex 17 (22.6393,37.1912)
- vertex 18 (21.3893,38.8162)
- vertex 19 (20.0768,40.1287)
- vertex 20 (21.0143,41.0037)
- vertex 21 (26.4518,40.1912)
- vertex 22 (26.4518,43.2537)
- vertex 23 (21.3893,44.4412)
- vertex 24 (17.7018,43.5662)
- vertex 25 (17.0768,40.3787)
- vertex 26 (17.7018,39.0037)
- vertex 27 (19.4518,36.0662)
- vertex 28 (19.4518,31.2537)
- vertex 29 (17.5768,25.8162)
- vertex 30 (13.5143,23.645)
- vertex 31 (11.9518,19.27)
- vertex 32 (8.07682,18.7075)
- vertex 33 (7.20182,15.395)
- vertex 34 (7.51432,14.145)
- vertex 35 (2.85827,13.3713)
- vertex 36 (1.73327,9.36603)
- vertex 37 (2.35827,5.55353)
- vertex 38 (-0.641732,4.92853)
- vertex 39 (-2.51673,1.42853)
- }
- sub_polygons
- {
- convex_polygon 0 { 20 21 22 23 24 }
- convex_polygon 1 { 19 20 24 25 26 }
- convex_polygon 2 { 15 16 17 18 19 26 27 }
- convex_polygon 3 { 14 15 27 28 }
- convex_polygon 4 { 12 13 14 28 29 }
- convex_polygon 5 { 11 12 29 30 }
- convex_polygon 6 { 8 9 10 11 30 31 }
- convex_polygon 7 { 8 31 32 33 34 }
- convex_polygon 8 { 38 39 0 1 2 }
- convex_polygon 9 { 37 38 2 3 }
- convex_polygon 10 { 35 36 37 3 4 5 }
- convex_polygon 11 { 8 34 35 5 6 7 }
- }
- attributes medium
- }
- polygon
- {
- height 1.77011 to 4.77011
- centre (118.027, 93.9742)
- vertices
- {
- vertex 0 (-3.9375,-1.8125)
- vertex 1 (1.9375,-2.5)
- vertex 2 (1.3125,1.39554)
- vertex 3 (-0.4375,1.77054)
- vertex 4 (-2.9375,1.02054)
- vertex 5 (-3.0625,4.58304)
- vertex 6 (-7.5625,5.45804)
- vertex 7 (-5.9375,-1.04196)
- }
- sub_polygons
- {
- convex_polygon 0 { 4 5 6 7 0 }
- convex_polygon 1 { 4 0 1 2 3 }
- }
- attributes medium
- }
- polygon
- {
- height 1.78561 to 4.78561
- centre (130.604, 93.9011)
- vertices
- {
- vertex 0 (-4.5625,-2.8125)
- vertex 1 (2.84217e-014,-2.3125)
- vertex 2 (2.3125,0.0625)
- vertex 3 (3.17779,4.78507)
- vertex 4 (-0.25,4.09757)
- vertex 5 (-0.4375,0.8125)
- vertex 6 (-3.6875,0.9375)
- }
- sub_polygons
- {
- convex_polygon 0 { 1 2 3 4 5 }
- convex_polygon 1 { 6 0 1 5 }
- }
- attributes medium
- }
- polygon
- {
- height 0.584457 to 3.58446
- centre (130.98, 113.8)
- vertices
- {
- vertex 0 (-4.625,-0.375)
- vertex 1 (-2.6875,-3.0625)
- vertex 2 (-0.0625,-3.125)
- vertex 3 (2.20864,-2.4333)
- vertex 4 (2.20864,-5.7458)
- vertex 5 (2.77114,-6.6208)
- vertex 6 (6.08364,-6.7458)
- vertex 7 (5.95864,-1.4333)
- vertex 8 (2.64614,0.399912)
- vertex 9 (-2.1875,0.8125)
- }
- sub_polygons
- {
- convex_polygon 0 { 8 9 0 1 2 3 }
- convex_polygon 1 { 6 7 8 3 4 5 }
- }
- attributes medium
- }
- polygon
- {
- height 1.75109 to 4.75109
- centre (111.068, 111.757)
- vertices
- {
- vertex 0 (-2.0625,-5)
- vertex 1 (1.1875,-3.375)
- vertex 2 (1.375,-1.42109e-014)
- vertex 3 (5.74537,-0.6875)
- vertex 4 (7.74537,0.75)
- vertex 5 (6.80787,1.75)
- vertex 6 (0.37037,2.875)
- vertex 7 (-2.125,0.0625)
- }
- sub_polygons
- {
- convex_polygon 0 { 6 7 0 1 2 }
- convex_polygon 1 { 4 5 6 2 3 }
- }
- attributes medium
- }
- polygon
- {
- height 1.91905 to 4.91905
- centre (95.2478, 123.072)
- vertices
- {
- vertex 0 (-3.9375,1.1875)
- vertex 1 (-4.9375,-1.875)
- vertex 2 (0.110188,-2.84664)
- vertex 3 (3.27345,-2.125)
- vertex 4 (3.96095,2.5625)
- vertex 5 (4.08595,7.5)
- vertex 6 (8.21095,8.79479)
- vertex 7 (8.39845,10.3573)
- vertex 8 (3.08595,11.2323)
- vertex 9 (1.46095,9.91979)
- vertex 10 (-0.414048,2.85729)
- vertex 11 (0.148452,1.22683)
- }
- sub_polygons
- {
- convex_polygon 0 { 11 0 1 2 3 }
- convex_polygon 1 { 8 9 10 11 3 4 5 }
- convex_polygon 2 { 7 8 5 6 }
- }
- attributes medium
- }
- polygon
- {
- height 0.702649 to 3.70265
- centre (141.232, 139.862)
- vertices
- {
- vertex 0 (-1.25,2.875)
- vertex 1 (-2.375,-1.5625)
- vertex 2 (4.262,-5.5)
- vertex 3 (7.137,-4.625)
- vertex 4 (7.387,-1.25)
- vertex 5 (4.637,-1.25)
- vertex 6 (2.8245,-1.5625)
- vertex 7 (2.262,-0.1875)
- vertex 8 (2.625,2.625)
- vertex 9 (0,4)
- }
- sub_polygons
- {
- convex_polygon 0 { 2 3 4 5 6 }
- convex_polygon 1 { 9 0 1 2 6 7 }
- convex_polygon 2 { 7 8 9 }
- }
- attributes medium
- }
- polygon
- {
- height 1.5884 to 4.5884
- centre (161.905, 137.362)
- vertices
- {
- vertex 0 (-5,1.875)
- vertex 1 (-5.75,-1.6875)
- vertex 2 (0.6875,-1.8125)
- vertex 3 (2.625,0.25)
- vertex 4 (1.75,5.5625)
- vertex 5 (0.4375,6.25)
- vertex 6 (-0.875,4.625)
- vertex 7 (-0.625,1.6875)
- vertex 8 (-1.9375,1.375)
- }
- sub_polygons
- {
- convex_polygon 0 { 8 0 1 2 3 }
- convex_polygon 1 { 7 8 3 }
- convex_polygon 2 { 6 7 3 4 5 }
- }
- attributes medium
- }
- polygon
- {
- height -0.0181 to 2.9819
- centre (162.499, 157.434)
- vertices
- {
- vertex 0 (1.6875,1.3125)
- vertex 1 (-1.3125,1.6875)
- vertex 2 (-6.125,1.9375)
- vertex 3 (-6.25,-1.6875)
- vertex 4 (-3.1875,-1.75)
- vertex 5 (-1.3125,-1.25)
- vertex 6 (-1.625,-5.875)
- vertex 7 (1.6875,-6.4375)
- vertex 8 (2.0625,-2.5)
- }
- sub_polygons
- {
- convex_polygon 0 { 5 6 7 8 0 }
- convex_polygon 1 { 4 5 0 1 2 3 }
- }
- attributes medium
- }
- polygon
- {
- height 2.42412 to 5.42412
- centre (141.747, 156.924)
- vertices
- {
- vertex 0 (-3,-2.3125)
- vertex 1 (-1.25,-5.75)
- vertex 2 (1.75,-4.4375)
- vertex 3 (0.1875,-1.25)
- vertex 4 (2.3125,-0.4375)
- vertex 5 (6.0625,-1.25)
- vertex 6 (7.3125,1.875)
- vertex 7 (3.8125,1.625)
- vertex 8 (0.5,2.1875)
- vertex 9 (-1.125,1.9375)
- vertex 10 (-2.5625,0.8125)
- }
- sub_polygons
- {
- convex_polygon 0 { 4 5 6 7 }
- convex_polygon 1 { 3 4 7 8 9 10 0 }
- convex_polygon 2 { 3 0 1 2 }
- }
- attributes medium
- }
- polygon
- {
- height 2.6783 to 5.6783
- centre (75.6451, 178.919)
- vertices
- {
- vertex 0 (-4,-7.34764e-016)
- vertex 1 (-4.5,-3)
- vertex 2 (2.07993,-3.86754)
- vertex 3 (3.64243,-2.55504)
- vertex 4 (3.89243,2.44496)
- vertex 5 (7.76743,3.56996)
- vertex 6 (8.76743,6.00746)
- vertex 7 (7.25336,9.66703)
- vertex 8 (7.12836,13.9795)
- vertex 9 (2.87836,13.3545)
- vertex 10 (3.50336,9.16703)
- vertex 11 (3.94086,7.54203)
- vertex 12 (5.25336,5.91703)
- vertex 13 (0.940864,5.10453)
- vertex 14 (0.378364,1.86986)
- vertex 15 (1,-0.0625)
- }
- sub_polygons
- {
- convex_polygon 0 { 7 8 9 10 11 12 }
- convex_polygon 1 { 4 5 6 7 12 }
- convex_polygon 2 { 4 12 13 14 15 }
- convex_polygon 3 { 2 3 4 15 }
- convex_polygon 4 { 1 2 15 0 }
- }
- attributes medium
- }
- polygon
- {
- height 0.181857 to 3.18186
- centre (100.845, 184.101)
- vertices
- {
- vertex 0 (-0.652817,1.9375)
- vertex 1 (4.89843e-016,-4)
- vertex 2 (2.375,-3.125)
- vertex 3 (1.9034,3.875)
- vertex 4 (0.0283976,4.625)
- vertex 5 (-2.8466,4.6875)
- vertex 6 (-1.9091,6.875)
- vertex 7 (-3.0966,8.375)
- vertex 8 (-5.5341,9.25)
- vertex 9 (-9.50291,9.9375)
- vertex 10 (-12.3154,8.8125)
- vertex 11 (-7.87791,5.625)
- vertex 12 (-4.84032,2.125)
- }
- sub_polygons
- {
- convex_polygon 0 { 5 6 7 8 9 10 11 }
- convex_polygon 1 { 5 11 12 0 }
- convex_polygon 2 { 3 4 5 0 }
- convex_polygon 3 { 2 3 0 1 }
- }
- attributes medium
- }
- polygon
- {
- height 0.887979 to 3.88798
- centre (45.9788, 56.8456)
- vertices
- {
- vertex 0 (3.72962,2.91472)
- vertex 1 (-7.14538,1.60222)
- vertex 2 (-10.1454,7.41472)
- vertex 3 (-10.0829,12.2272)
- vertex 4 (-13.1454,10.7897)
- vertex 5 (-13.7704,4.78972)
- vertex 6 (-12.2079,0.164722)
- vertex 7 (-10.7704,-1.83528)
- vertex 8 (-6.39538,-3.58528)
- vertex 9 (-2.52038,-3.02278)
- vertex 10 (2.66712,-1.58528)
- }
- sub_polygons
- {
- convex_polygon 0 { 2 3 4 5 6 7 }
- convex_polygon 1 { 1 2 7 8 }
- convex_polygon 2 { 9 10 0 1 8 }
- }
- attributes medium
- }
- polygon
- {
- height -4.065 to -1.065
- centre (14.7065, 81.4203)
- vertices
- {
- vertex 0 (6,0.233671)
- vertex 1 (10.824,0.233671)
- vertex 2 (13.7615,4.23367)
- vertex 3 (18.4615,6.3216)
- vertex 4 (18.399,10.3841)
- vertex 5 (11.149,12.0091)
- vertex 6 (8.89898,10.6341)
- vertex 7 (6.39898,7.4466)
- vertex 8 (0.808115,7.0091)
- vertex 9 (-3.2635,5.92894)
- vertex 10 (-6.6385,2.11644)
- vertex 11 (-8.30887,-6.52929)
- vertex 12 (0,-17.5)
- vertex 13 (3.5,-12.625)
- vertex 14 (4.375,-0.578829)
- }
- sub_polygons
- {
- convex_polygon 0 { 8 9 10 11 12 13 14 }
- convex_polygon 1 { 7 8 14 0 }
- convex_polygon 2 { 5 6 7 0 1 2 }
- convex_polygon 3 { 4 5 2 3 }
- }
- attributes deep_water
- }
- polygon
- {
- height -4.065 to -1.065
- centre (50.9188, 93.495)
- vertices
- {
- vertex 0 (-9.875,-1.3125)
- vertex 1 (-9.375,-6.3125)
- vertex 2 (-4.91252,-7.875)
- vertex 3 (-0.59595,-6.8125)
- vertex 4 (2.34155,-3.1875)
- vertex 5 (3.96655,-2.125)
- vertex 6 (8.34155,-2.1875)
- vertex 7 (12.529,1.4375)
- vertex 8 (12.5585,6.45013)
- vertex 9 (18.1835,12.3876)
- vertex 10 (23.8017,13.042)
- vertex 11 (23.7392,19.917)
- vertex 12 (16.2279,19.417)
- vertex 13 (12.4779,15.667)
- vertex 14 (9.91538,14.292)
- vertex 15 (6.03057,12.1959)
- vertex 16 (5.28057,9.82092)
- vertex 17 (5.21807,6.38342)
- vertex 18 (4.09307,4.98866)
- vertex 19 (-0.656928,5.30116)
- vertex 20 (-3.21943,3.48866)
- vertex 21 (-5.22502,0.6875)
- }
- sub_polygons
- {
- convex_polygon 0 { 9 10 11 12 13 }
- convex_polygon 1 { 8 9 13 14 15 16 17 }
- convex_polygon 2 { 5 6 7 8 17 18 }
- convex_polygon 3 { 4 5 18 19 20 21 }
- convex_polygon 4 { 2 3 4 21 0 1 }
- }
- attributes deep_water
- }
- polygon
- {
- height -3.77946 to -0.779511
- centre (88.7261, 110.459)
- vertices
- {
- vertex 0 (-7.125,-3.4375)
- vertex 1 (-0.875,-5.4375)
- vertex 2 (3.95149,-4.875)
- vertex 3 (7.32649,-4.0625)
- vertex 4 (10.0372,0.0625)
- vertex 5 (12.7247,1.625)
- vertex 6 (16.2192,2.25)
- vertex 7 (21.2616,6.11351)
- vertex 8 (25.4491,10.426)
- vertex 9 (30.7112,10.676)
- vertex 10 (34.2341,14.4089)
- vertex 11 (27.4216,18.4714)
- vertex 12 (22.4841,18.3464)
- vertex 13 (17.648,13.9796)
- vertex 14 (12.023,8.4796)
- vertex 15 (4.19567,7.34994)
- vertex 16 (0.330874,4.28056)
- vertex 17 (-3.25,4.3125)
- vertex 18 (-6.75,3.375)
- }
- sub_polygons
- {
- convex_polygon 0 { 8 9 10 11 12 13 }
- convex_polygon 1 { 5 6 7 8 13 14 }
- convex_polygon 2 { 4 5 14 15 16 }
- convex_polygon 3 { 1 2 3 4 16 17 18 0 }
- }
- attributes deep_water
- }
- polygon
- {
- height -2.9186 to 0.0814
- centre (122.134, 135.386)
- vertices
- {
- vertex 0 (-4.375,0.125)
- vertex 1 (1.5,-5.125)
- vertex 2 (4.625,-3.375)
- vertex 3 (6.18029,-0.5625)
- vertex 4 (9.68029,1.8125)
- vertex 5 (12.6178,3)
- vertex 6 (16.33,8.92839)
- vertex 7 (16.83,14.2409)
- vertex 8 (15.7675,16.8357)
- vertex 9 (14.58,19.2732)
- vertex 10 (14.3925,22.4607)
- vertex 11 (15.3925,25.3357)
- vertex 12 (20.2855,25.6482)
- vertex 13 (23.2855,25.0857)
- vertex 14 (25.723,25.6482)
- vertex 15 (33.3859,25.9378)
- vertex 16 (37.6984,30.6878)
- vertex 17 (43.6359,30.6878)
- vertex 18 (34.1984,39.6253)
- vertex 19 (28.3234,33.4378)
- vertex 20 (21.6324,34.5628)
- vertex 21 (16.5699,34.3753)
- vertex 22 (12.1949,32.9378)
- vertex 23 (8.82131,29.3603)
- vertex 24 (7.32131,24.3603)
- vertex 25 (8.19631,17.5852)
- vertex 26 (8.82131,13.3977)
- vertex 27 (8.25881,9.58521)
- vertex 28 (5.00881,8.42494)
- vertex 29 (0.88381,7.86244)
- vertex 30 (0.00881025,4.23744)
- vertex 31 (-1.36619,2.86244)
- vertex 32 (-3.5625,2.4375)
- }
- sub_polygons
- {
- convex_polygon 0 { 16 17 18 19 }
- convex_polygon 1 { 14 15 16 19 20 21 22 23 }
- convex_polygon 2 { 12 13 14 23 }
- convex_polygon 3 { 11 12 23 }
- convex_polygon 4 { 10 11 23 24 25 26 }
- convex_polygon 5 { 9 10 26 27 }
- convex_polygon 6 { 4 5 6 7 8 9 27 }
- convex_polygon 7 { 3 4 27 28 }
- convex_polygon 8 { 1 2 3 28 29 30 }
- convex_polygon 9 { 1 30 31 }
- convex_polygon 10 { 0 1 31 32 }
- }
- attributes deep_water
- }
- polygon
- {
- height 2.23254 to 6.19087
- centre (74.7482, 136.466)
- vertices
- {
- vertex 0 (-4.68687,-4.53255)
- vertex 1 (-2.6452,-5.99088)
- vertex 2 (-0.471231,-4.04167)
- vertex 3 (0.0287691,-1.5)
- vertex 4 (3.9871,-0.125)
- vertex 5 (4.52877,2.5)
- vertex 6 (9.02877,3.33333)
- vertex 7 (7.69544,7.36458)
- vertex 8 (1.77877,7.73958)
- vertex 9 (0.362102,3.82292)
- vertex 10 (-1.47123,2.57292)
- vertex 11 (-4.10353,-0.0742167)
- }
- sub_polygons
- {
- convex_polygon 0 { 5 6 7 8 9 }
- convex_polygon 1 { 3 4 5 9 10 11 }
- convex_polygon 2 { 2 3 11 0 1 }
- }
- }
- }
-
- beacongraph Undefined
- {
- // Beacon Data
- beacon 1 at (97.4666, 29.1166) radius 2
- beacon 2 at (85.1617, 36.0676) radius 2
- beacon 3 at (78.6416, 36.9916) radius 2
- beacon 4 at (77.8916, 28.2166) radius 2
- beacon 5 at (82.6166, 23.7166) radius 2
- beacon 6 at (88.0166, 21.5416) radius 2
- beacon 7 at (97.3166, 18.3166) radius 2
- beacon 8 at (97.0916, 35.2368) radius 2
- beacon 9 at (103.056, 41.2368) radius 2
- beacon 10 at (107.316, 45.4564) radius 2
- beacon 11 at (104.016, 52.1314) radius 2
- beacon 12 at (96.1732, 51.4564) radius 2
- beacon 13 at (90.6232, 50.9314) radius 2
- beacon 14 at (84.3343, 51.0064) radius 2
- beacon 15 at (81.1117, 42.4426) radius 2
- beacon 16 at (110.105, 30.0578) radius 2
- beacon 17 at (115.862, 24.3459) radius 2
- beacon 18 at (119.719, 18.1072) radius 2
- beacon 19 at (126.394, 20.0572) radius 2
- beacon 20 at (127.144, 31.8322) radius 2
- beacon 21 at (120.919, 37.9576) radius 2
- beacon 22 at (121.669, 45.6997) radius 2
- beacon 23 at (112.669, 48.3247) radius 2
- beacon 24 at (109.594, 42.9997) radius 2
- beacon 25 at (115.49, 50.95) radius 2
- beacon 26 at (117.74, 57.85) radius 2
- beacon 27 at (112.077, 63.4965) radius 2
- beacon 28 at (101.315, 74.7006) radius 2
- beacon 29 at (93.5152, 76.2756) radius 2
- beacon 30 at (93.046, 65.095) radius 2
- beacon 31 at (98.596, 59.245) radius 2
- beacon 32 at (107.24, 52.675) radius 2
- beacon 33 at (137.305, 50.1591) radius 2
- beacon 34 at (144.357, 48.135) radius 2
- beacon 35 at (150.149, 55.4091) radius 2
- beacon 36 at (155.624, 63.9393) radius 2
- beacon 37 at (161.324, 70.3893) radius 2
- beacon 38 at (167.341, 77.8316) radius 2
- beacon 39 at (169.666, 85.7957) radius 2
- beacon 40 at (173.041, 94.1692) radius 2
- beacon 41 at (171.841, 100.356) radius 2
- beacon 42 at (163.891, 102.569) radius 2
- beacon 43 at (158.491, 100.169) radius 2
- beacon 44 at (154.966, 81.0502) radius 2
- beacon 45 at (150.16, 75.5486) radius 2
- beacon 46 at (144.086, 69.7653) radius 2
- beacon 47 at (140.08, 60.9591) radius 2
- beacon 48 at (108.901, 91.3059) radius 2
- beacon 49 at (119.139, 87.675) radius 2
- beacon 50 at (122.726, 89.425) radius 2.875
- beacon 51 at (123.212, 97.4155) radius 2.32917
- beacon 52 at (116.601, 102.449) radius 2.7875
- beacon 53 at (106.801, 102.886) radius 3.4
- beacon 54 at (105.395, 110.906) radius 1.7375
- beacon 55 at (110.995, 115.718) radius 0.95
- beacon 56 at (122.278, 116.068) radius 3.1375
- beacon 57 at (120.528, 108.981) radius 2
- beacon 58 at (115.716, 106.006) radius 2
- beacon 59 at (125.581, 108.281) radius 2
- beacon 60 at (132.119, 102.898) radius 3.6625
- beacon 61 at (139.581, 105.131) radius 2
- beacon 62 at (139.056, 114.493) radius 2
- beacon 63 at (130.481, 117.643) radius 2
- beacon 64 at (137.456, 99.8359) radius 2
- beacon 65 at (135.619, 93.0109) radius 2
- beacon 66 at (128.881, 87.5859) radius 2
- beacon 67 at (152.248, 131.95) radius 3.1375
- beacon 68 at (163.629, 132.941) radius 2
- beacon 69 at (167.304, 137.928) radius 2
- beacon 70 at (167.129, 142.931) radius 2
- beacon 71 at (163.366, 147.218) radius 3.225
- beacon 72 at (158.466, 144.721) radius 2
- beacon 73 at (154.616, 140.608) radius 2
- beacon 74 at (150.687, 140.68) radius 2
- beacon 75 at (146.399, 144.618) radius 2
- beacon 76 at (140.449, 145.755) radius 1.3
- beacon 77 at (138.874, 142.78) radius 0.8625
- beacon 78 at (136.337, 136.499) radius 2
- beacon 79 at (146.224, 131.249) radius 2
- beacon 80 at (140.127, 149.324) radius 0.933333
- beacon 81 at (137.819, 154.782) radius 0.7625
- beacon 82 at (138.415, 159.431) radius 1.0375
- beacon 83 at (142.402, 160.119) radius 0.7625
- beacon 84 at (145.716, 159.569) radius 0.7625
- beacon 85 at (150.162, 159.89) radius 0.991667
- beacon 86 at (151.125, 154.03) radius 2
- beacon 87 at (146.005, 151.606) radius 2
- beacon 88 at (154.273, 153.875) radius 2
- beacon 89 at (155.306, 160.063) radius 0.9
- beacon 90 at (158.784, 161.575) radius 1.54167
- beacon 91 at (166.347, 160.338) radius 2
- beacon 92 at (167.487, 149.825) radius 2
- beacon 93 at (158.46, 150.233) radius 2
- beacon 94 at (106.31, 131.014) radius 2
- beacon 95 at (102.538, 126.028) radius 0.975
- beacon 96 at (99.7363, 120.118) radius 1.075
- beacon 97 at (95.4387, 119.205) radius 1
- beacon 98 at (87.853, 120.345) radius 1.41667
- beacon 99 at (90.0988, 125.707) radius 1.70833
- beacon 100 at (94.9571, 133.803) radius 1.5
- beacon 101 at (98.2113, 136.232) radius 1.54167
- beacon 102 at (104.92, 134.799) radius 1.41667
- beacon 103 at (101.135, 191.817) radius 1.33333
- beacon 104 at (104.926, 188.94) radius 2
- beacon 105 at (105.37, 179.293) radius 2
- beacon 106 at (99.9946, 177.751) radius 2
- beacon 107 at (94.3318, 184.064) radius 2
- beacon 108 at (86.4949, 189.842) radius 2
- beacon 109 at (86.7866, 184.472) radius 2
- beacon 110 at (85.2449, 180.306) radius 2
- beacon 111 at (81.6372, 175.437) radius 2
- beacon 112 at (78.3872, 172.896) radius 2
- beacon 113 at (68.5112, 174.144) radius 2
- beacon 114 at (70.0529, 181.128) radius 2
- beacon 115 at (74.9206, 187.122) radius 2
- beacon 116 at (20.5853, 68.1753) radius 2
- beacon 117 at (27.1634, 79.8115) radius 2
- beacon 118 at (36.9376, 85.8691) radius 3.25
- beacon 119 at (36.6876, 93.8627) radius 2.79167
- beacon 120 at (25.5248, 95.7794) radius 2
- beacon 121 at (14.9378, 90.7182) radius 2
- beacon 122 at (9.71729, 88.2599) radius 1.16667
- beacon 123 at (47.4672, 100.46) radius 2
- beacon 124 at (54.8474, 106.997) radius 2
- beacon 125 at (66.0096, 115.558) radius 2
- beacon 126 at (74.5823, 116.608) radius 2
- beacon 127 at (77.7361, 114.391) radius 2.66667
- beacon 128 at (77.2361, 104.927) radius 2.41667
- beacon 129 at (65.5662, 93.3124) radius 2
- beacon 130 at (59.9165, 89.2055) radius 2
- beacon 131 at (51.2511, 84.6803) radius 2
- beacon 132 at (45.3796, 82.972) radius 2
- beacon 133 at (87.5468, 102.76) radius 2
- beacon 134 at (97.8466, 104.176) radius 2
- beacon 135 at (120.343, 119.288) radius 1.66667
- beacon 136 at (126.106, 124.117) radius 2
- beacon 137 at (123.773, 127.576) radius 2.125
- beacon 138 at (116.564, 132.159) radius 2.41667
- beacon 139 at (110.432, 130.901) radius 2
- beacon 140 at (116.826, 139.677) radius 2
- beacon 141 at (121.426, 144.694) radius 2
- beacon 142 at (126.801, 148.775) radius 2
- beacon 143 at (127.134, 160.25) radius 2
- beacon 144 at (128.706, 165.796) radius 2
- beacon 145 at (132.742, 170.3) radius 2
- beacon 146 at (138.421, 172.217) radius 2
- beacon 147 at (144.212, 172.425) radius 2
- beacon 148 at (153.198, 174.891) radius 2
- beacon 149 at (52.7692, 61.2725) radius 2
- beacon 150 at (41.9559, 63.3165) radius 2
- beacon 151 at (39.7976, 69.9795) radius 2
- beacon 152 at (35.1309, 71.7295) radius 2
- beacon 153 at (30.9968, 68.8899) radius 2
- beacon 154 at (29.8809, 61.6378) radius 2
- beacon 155 at (32.9142, 52.9309) radius 2
- beacon 156 at (39.7392, 50.9475) radius 2
- beacon 157 at (50.4942, 53.2225) radius 2
- beacon 158 at (91.7185, 119.18) radius 1.29167
- beacon 159 at (100.685, 129.551) radius 0.875
- beacon 160 at (72.3066, 128.295) radius 2
- beacon 161 at (76.515, 130.545) radius 2
- beacon 162 at (79.0874, 131.831) radius 2
- beacon 163 at (87.7957, 139.296) radius 2
- beacon 164 at (84.5842, 145.794) radius 2
- beacon 165 at (75.3534, 146.517) radius 2
- beacon 166 at (68.6867, 137.482) radius 2
- beacon 167 at (67.4042, 129.895) radius 2
-
- // Arc Data
- arc 1 2
- arc 1 7
- arc 1 8
- arc 1 9
- arc 1 16
- arc 1 17
- arc 1 18
- arc 1 24
- arc 2 3
- arc 2 8
- arc 2 15
- arc 2 17
- arc 2 149
- arc 2 157
- arc 3 4
- arc 3 15
- arc 3 118
- arc 3 128
- arc 3 129
- arc 3 130
- arc 3 131
- arc 3 132
- arc 3 149
- arc 3 156
- arc 3 157
- arc 4 5
- arc 4 129
- arc 4 130
- arc 4 131
- arc 4 132
- arc 4 149
- arc 4 156
- arc 4 157
- arc 5 6
- arc 6 7
- arc 7 9
- arc 7 10
- arc 7 16
- arc 7 17
- arc 7 18
- arc 7 24
- arc 8 9
- arc 8 16
- arc 8 17
- arc 8 18
- arc 9 10
- arc 9 16
- arc 9 24
- arc 10 11
- arc 10 23
- arc 10 24
- arc 10 32
- arc 11 12
- arc 11 31
- arc 11 32
- arc 11 117
- arc 11 131
- arc 11 132
- arc 11 149
- arc 11 151
- arc 12 13
- arc 12 30
- arc 12 31
- arc 12 117
- arc 12 129
- arc 12 130
- arc 12 131
- arc 12 132
- arc 12 151
- arc 13 14
- arc 13 30
- arc 13 31
- arc 13 117
- arc 13 118
- arc 13 128
- arc 13 129
- arc 13 130
- arc 13 131
- arc 13 132
- arc 13 133
- arc 13 151
- arc 14 15
- arc 14 29
- arc 14 30
- arc 14 31
- arc 14 117
- arc 14 118
- arc 14 128
- arc 14 129
- arc 14 130
- arc 14 131
- arc 14 132
- arc 14 133
- arc 14 134
- arc 14 149
- arc 14 151
- arc 14 156
- arc 14 157
- arc 15 118
- arc 15 128
- arc 15 129
- arc 15 130
- arc 15 131
- arc 15 132
- arc 15 133
- arc 15 149
- arc 15 156
- arc 15 157
- arc 16 17
- arc 16 24
- arc 17 18
- arc 18 19
- arc 19 20
- arc 19 33
- arc 19 34
- arc 20 21
- arc 20 22
- arc 20 33
- arc 20 34
- arc 20 49
- arc 20 50
- arc 20 65
- arc 20 66
- arc 20 67
- arc 20 68
- arc 21 22
- arc 21 33
- arc 21 34
- arc 21 43
- arc 21 47
- arc 21 68
- arc 22 23
- arc 22 25
- arc 22 26
- arc 22 33
- arc 22 34
- arc 22 43
- arc 22 46
- arc 22 47
- arc 22 49
- arc 22 50
- arc 22 65
- arc 22 66
- arc 22 67
- arc 22 68
- arc 23 24
- arc 23 25
- arc 23 32
- arc 23 33
- arc 25 26
- arc 25 32
- arc 25 33
- arc 25 43
- arc 25 46
- arc 25 47
- arc 26 27
- arc 26 33
- arc 26 43
- arc 26 44
- arc 26 45
- arc 26 46
- arc 26 47
- arc 26 48
- arc 26 49
- arc 26 50
- arc 26 65
- arc 26 66
- arc 26 68
- arc 26 134
- arc 27 28
- arc 27 33
- arc 27 43
- arc 27 44
- arc 27 45
- arc 27 46
- arc 27 47
- arc 27 48
- arc 27 49
- arc 27 50
- arc 27 66
- arc 27 133
- arc 27 134
- arc 28 29
- arc 28 33
- arc 28 44
- arc 28 45
- arc 28 46
- arc 28 47
- arc 28 48
- arc 28 49
- arc 28 53
- arc 28 66
- arc 28 128
- arc 28 129
- arc 28 133
- arc 28 134
- arc 29 30
- arc 29 44
- arc 29 48
- arc 29 49
- arc 29 53
- arc 29 54
- arc 29 66
- arc 29 117
- arc 29 128
- arc 29 129
- arc 29 130
- arc 29 131
- arc 29 132
- arc 29 133
- arc 29 134
- arc 29 149
- arc 29 150
- arc 29 151
- arc 29 152
- arc 29 157
- arc 30 31
- arc 30 117
- arc 30 128
- arc 30 129
- arc 30 130
- arc 30 131
- arc 30 132
- arc 30 133
- arc 30 149
- arc 30 150
- arc 30 151
- arc 30 157
- arc 31 32
- arc 31 117
- arc 31 131
- arc 31 132
- arc 31 149
- arc 31 151
- arc 31 157
- arc 33 34
- arc 33 47
- arc 33 48
- arc 33 49
- arc 33 50
- arc 33 65
- arc 33 66
- arc 33 128
- arc 33 133
- arc 34 35
- arc 35 36
- arc 36 37
- arc 37 38
- arc 38 39
- arc 39 40
- arc 40 41
- arc 41 42
- arc 41 67
- arc 41 68
- arc 41 69
- arc 41 78
- arc 41 79
- arc 42 43
- arc 42 60
- arc 42 61
- arc 42 62
- arc 42 67
- arc 42 68
- arc 42 69
- arc 42 78
- arc 42 79
- arc 43 44
- arc 43 45
- arc 43 46
- arc 43 60
- arc 43 61
- arc 43 62
- arc 43 64
- arc 43 65
- arc 43 66
- arc 43 67
- arc 43 68
- arc 43 69
- arc 43 78
- arc 43 79
- arc 44 45
- arc 44 61
- arc 44 62
- arc 44 64
- arc 44 65
- arc 44 66
- arc 44 67
- arc 44 78
- arc 44 79
- arc 44 117
- arc 44 130
- arc 44 131
- arc 45 46
- arc 45 49
- arc 45 61
- arc 45 62
- arc 45 64
- arc 45 65
- arc 45 66
- arc 45 67
- arc 45 68
- arc 45 78
- arc 45 79
- arc 45 129
- arc 45 130
- arc 45 131
- arc 45 132
- arc 46 47
- arc 46 48
- arc 46 49
- arc 46 50
- arc 46 61
- arc 46 64
- arc 46 65
- arc 46 66
- arc 46 67
- arc 46 68
- arc 46 79
- arc 46 128
- arc 46 129
- arc 46 130
- arc 47 48
- arc 47 49
- arc 47 50
- arc 47 61
- arc 47 64
- arc 47 65
- arc 47 66
- arc 47 67
- arc 47 79
- arc 47 128
- arc 47 129
- arc 47 133
- arc 48 49
- arc 48 53
- arc 48 128
- arc 48 129
- arc 48 130
- arc 48 131
- arc 48 133
- arc 48 134
- arc 48 149
- arc 48 150
- arc 48 151
- arc 48 152
- arc 48 157
- arc 49 50
- arc 49 129
- arc 49 130
- arc 49 131
- arc 49 150
- arc 49 151
- arc 49 152
- arc 50 51
- arc 50 66
- arc 51 52
- arc 51 56
- arc 51 57
- arc 51 59
- arc 51 60
- arc 52 53
- arc 52 57
- arc 52 58
- arc 52 59
- arc 52 60
- arc 53 54
- arc 53 58
- arc 53 116
- arc 53 129
- arc 53 130
- arc 53 134
- arc 53 149
- arc 53 150
- arc 53 151
- arc 53 152
- arc 53 157
- arc 54 55
- arc 54 134
- arc 55 56
- arc 55 135
- arc 56 57
- arc 56 59
- arc 56 63
- arc 56 67
- arc 56 79
- arc 56 135
- arc 56 136
- arc 57 58
- arc 57 59
- arc 58 60
- arc 59 60
- arc 60 61
- arc 60 64
- arc 61 62
- arc 61 64
- arc 61 67
- arc 61 68
- arc 61 79
- arc 62 63
- arc 62 67
- arc 62 68
- arc 62 78
- arc 62 79
- arc 62 136
- arc 63 67
- arc 63 68
- arc 63 78
- arc 63 79
- arc 63 136
- arc 64 65
- arc 65 66
- arc 65 68
- arc 67 68
- arc 67 73
- arc 67 74
- arc 67 79
- arc 68 69
- arc 69 70
- arc 70 71
- arc 70 92
- arc 71 72
- arc 71 80
- arc 71 92
- arc 71 93
- arc 72 73
- arc 72 75
- arc 72 80
- arc 72 86
- arc 72 87
- arc 72 88
- arc 72 93
- arc 73 74
- arc 73 86
- arc 73 87
- arc 73 88
- arc 73 93
- arc 74 75
- arc 74 86
- arc 74 87
- arc 74 88
- arc 74 93
- arc 75 76
- arc 75 80
- arc 75 86
- arc 75 87
- arc 75 88
- arc 75 93
- arc 76 77
- arc 76 80
- arc 76 87
- arc 76 93
- arc 77 78
- arc 78 79
- arc 78 136
- arc 79 136
- arc 79 137
- arc 80 81
- arc 80 87
- arc 81 82
- arc 82 83
- arc 83 84
- arc 84 85
- arc 85 86
- arc 85 88
- arc 85 89
- arc 86 87
- arc 86 88
- arc 86 89
- arc 87 93
- arc 88 89
- arc 88 93
- arc 89 90
- arc 90 91
- arc 91 92
- arc 94 95
- arc 94 102
- arc 94 139
- arc 94 140
- arc 94 143
- arc 94 159
- arc 95 96
- arc 95 139
- arc 95 159
- arc 96 97
- arc 96 139
- arc 96 159
- arc 97 158
- arc 98 99
- arc 98 126
- arc 98 127
- arc 98 158
- arc 98 160
- arc 98 161
- arc 98 162
- arc 98 163
- arc 99 100
- arc 99 105
- arc 99 106
- arc 99 107
- arc 99 125
- arc 99 126
- arc 99 127
- arc 99 160
- arc 99 161
- arc 99 162
- arc 99 163
- arc 100 101
- arc 100 105
- arc 100 106
- arc 100 107
- arc 100 109
- arc 100 110
- arc 100 111
- arc 100 112
- arc 100 113
- arc 100 120
- arc 100 125
- arc 100 126
- arc 100 127
- arc 100 162
- arc 100 163
- arc 101 102
- arc 101 105
- arc 101 106
- arc 101 107
- arc 101 109
- arc 101 110
- arc 101 111
- arc 101 112
- arc 101 113
- arc 101 140
- arc 101 141
- arc 101 143
- arc 101 144
- arc 101 162
- arc 101 163
- arc 101 164
- arc 102 105
- arc 102 106
- arc 102 107
- arc 102 109
- arc 102 110
- arc 102 111
- arc 102 112
- arc 102 113
- arc 102 138
- arc 102 139
- arc 102 140
- arc 102 143
- arc 102 144
- arc 102 164
- arc 103 104
- arc 104 105
- arc 104 141
- arc 104 142
- arc 104 143
- arc 104 144
- arc 104 145
- arc 104 146
- arc 104 147
- arc 104 148
- arc 105 106
- arc 105 121
- arc 105 139
- arc 105 140
- arc 105 141
- arc 105 142
- arc 105 143
- arc 105 144
- arc 105 145
- arc 105 146
- arc 105 148
- arc 105 163
- arc 105 164
- arc 105 165
- arc 106 107
- arc 106 109
- arc 106 110
- arc 106 111
- arc 106 120
- arc 106 121
- arc 106 139
- arc 106 140
- arc 106 141
- arc 106 142
- arc 106 143
- arc 106 144
- arc 106 145
- arc 106 146
- arc 106 163
- arc 106 164
- arc 106 165
- arc 107 108
- arc 107 109
- arc 107 110
- arc 107 119
- arc 107 120
- arc 107 121
- arc 107 122
- arc 107 138
- arc 107 139
- arc 107 140
- arc 107 163
- arc 107 164
- arc 107 165
- arc 108 109
- arc 108 138
- arc 108 140
- arc 108 141
- arc 109 110
- arc 109 138
- arc 109 139
- arc 109 140
- arc 109 141
- arc 109 142
- arc 110 111
- arc 110 138
- arc 110 139
- arc 110 140
- arc 110 141
- arc 110 142
- arc 110 143
- arc 110 144
- arc 110 163
- arc 110 164
- arc 110 165
- arc 111 112
- arc 111 138
- arc 111 139
- arc 111 140
- arc 111 141
- arc 111 142
- arc 111 143
- arc 111 144
- arc 111 145
- arc 111 146
- arc 111 148
- arc 111 163
- arc 111 164
- arc 111 165
- arc 111 166
- arc 112 113
- arc 112 119
- arc 112 120
- arc 112 121
- arc 112 122
- arc 112 123
- arc 112 124
- arc 112 138
- arc 112 139
- arc 112 140
- arc 112 141
- arc 112 142
- arc 112 143
- arc 112 144
- arc 112 145
- arc 112 148
- arc 112 164
- arc 112 165
- arc 112 166
- arc 113 114
- arc 113 119
- arc 113 120
- arc 113 121
- arc 113 122
- arc 113 123
- arc 113 124
- arc 113 138
- arc 113 140
- arc 113 141
- arc 113 142
- arc 113 164
- arc 113 165
- arc 113 166
- arc 114 115
- arc 114 121
- arc 114 122
- arc 116 117
- arc 116 118
- arc 116 132
- arc 116 134
- arc 116 153
- arc 116 154
- arc 116 155
- arc 117 118
- arc 117 132
- arc 117 152
- arc 117 153
- arc 117 154
- arc 118 119
- arc 118 132
- arc 118 149
- arc 118 151
- arc 118 152
- arc 118 153
- arc 119 120
- arc 119 123
- arc 119 160
- arc 119 166
- arc 119 167
- arc 120 121
- arc 120 123
- arc 120 124
- arc 120 125
- arc 120 160
- arc 120 166
- arc 120 167
- arc 121 122
- arc 121 165
- arc 121 166
- arc 121 167
- arc 123 124
- arc 123 166
- arc 123 167
- arc 124 125
- arc 124 160
- arc 124 167
- arc 125 126
- arc 125 143
- arc 125 144
- arc 125 160
- arc 125 161
- arc 125 167
- arc 126 127
- arc 126 160
- arc 126 161
- arc 126 162
- arc 126 163
- arc 126 167
- arc 127 128
- arc 127 160
- arc 127 161
- arc 127 162
- arc 127 163
- arc 128 129
- arc 128 133
- arc 128 149
- arc 129 130
- arc 129 133
- arc 129 149
- arc 130 131
- arc 130 149
- arc 130 150
- arc 130 151
- arc 131 132
- arc 131 149
- arc 131 150
- arc 131 151
- arc 131 152
- arc 132 149
- arc 132 150
- arc 132 151
- arc 132 152
- arc 133 134
- arc 133 149
- arc 133 150
- arc 133 151
- arc 133 152
- arc 133 157
- arc 134 149
- arc 134 150
- arc 134 151
- arc 134 152
- arc 134 157
- arc 135 136
- arc 136 137
- arc 137 138
- arc 138 139
- arc 138 164
- arc 139 140
- arc 140 141
- arc 140 163
- arc 140 164
- arc 141 142
- arc 141 143
- arc 141 163
- arc 141 164
- arc 142 143
- arc 142 162
- arc 142 163
- arc 142 164
- arc 143 144
- arc 143 163
- arc 143 164
- arc 143 165
- arc 144 145
- arc 144 163
- arc 144 164
- arc 144 165
- arc 145 146
- arc 145 164
- arc 145 165
- arc 146 147
- arc 147 148
- arc 149 150
- arc 149 151
- arc 149 157
- arc 150 151
- arc 151 152
- arc 152 153
- arc 153 154
- arc 154 155
- arc 155 156
- arc 156 157
- arc 160 161
- arc 160 167
- arc 161 162
- arc 162 163
- arc 163 164
- arc 164 165
- arc 165 166
- arc 166 167
- }
-
-